Dispatching Mineral Deposits by Rail using
Genetic Algorithms

V. Salim
Department of Information Management and Marketing
University of Western Austalia

X Cai

Bepartment of Systems Engineering and Engincering Management
Chinese University of Hong Kong

Abstract The partioular problem of mineral dispatching examined in this paper involves the transportation of mineral ore using a rail

SRIFSED & iy

system. An optimal strategy for transporting the cargo should consider two important criteria; first, none of the trains conflicts with
any other en route; second, the costs of each schedule refated to delay and stopping should be minimised. The latter two imply that
it is desirable for a train to reach its destination in the shortest time possible. The probiem at hand is particufarly well suited to a
genetic algorithmic formulation as it is an NP-hard problem and, hence, it is impossible in practice to use a constructive algorithm to
obtain a solution. Various GA specifications are presented for an example extracted from a real system and the results obtained are

compared against each other.

L INTRODUCTION

The efficient transportation of mineral ore by rail requires a
timetable, or schedule, dictating arrival and departure times of
the trains at given junctions along 2 railway system.
Timetables should feature the shortest possible transit times
for all trains in order to minimise costs. This characteristic is
distinet from trains carrving passengers, where the arrival and
departure times are fixed. In this case, only the departure time
of each train is given. Certain salient constraints must also he
observed: the trains must arrive af thelr given destinations,
and no coilisions must arise from the time schedule.

The model of the railway system being considered is based on
the Mt Newman mines railway svstem in Western Australia. It
comprises a single track long haul railway line with passing
toops where trains may enter and wait to avoid a head-en
collision, or overtake other trains. In the present model,
overtaking is not considered.  An optimal schedule to
transport mineral ore by rail should minimise economic,
environmental and social costs. A genetic algorithm (GA)
taking into account the economic and environmental costs was
presented in Salim and Cai {1993). One of the aims of this
paper is to test the algorithm described therein against some
other GA specifications to obtain  the best performing
specification.

2. PROBLEM STATEMENT!

The specific task of the algorithm is to generate arrival and

' For a more detailed exposition of the problem, see Salim and
Cai {1993)

departure times of every train in the system at every passing
loop on the raitway line. Hence, the algorithm dictates how
long a train waits in a passing loop for another to pass,
ensuring that ne collistons or infeasibilities arise. At the same
time, a cost function for the schedule which factors costs
associated with delays and stopping is to be minimised. The
problem is cast iito a form easily analysed by a GA through
using a binary p x g matrix, the decision matrix, where p is the
number of trains in the system and ¢ is the number of passing
loops.  Every element in the decision matrix is a decision
variable such that:

IO i tradn |15 required Lo stop at passing foop k and

* l'! 1 train i 15 not required o stop at passing loop k

The cost function of a decision matrix m depends on 1y, the
cost of stopping train 7 at loop &, py, the cost of train / being
delayed per unit time and oy, the time that train / stops af loop
k, Therefore,

Clom) = Z z V.t (1}

is the cost function to be minimised. The advantage with this
simple formulation is that v, and py inherently contain
information about train priorities as well as load. The main
constraints to be satisfied, which are seff-evident, are listed
below:,

2.} Constraiuts

No coliisions should occur.
No more than one train can ocoupy a passing loop.
One train must stop when two trains are at & loop.

— 284 —



3. ANALYSIS AND DESCRIPTION OF
ALGORITHMS

For simphicity, and because the Mt Newman systerm is just a
single line, we first examined a single railway line assumed 1o
tun north-south. The algorithm derived previously to solve the
scheduling problem in this case given in Salim and Cai (1993)
will be summarised. Then, improvements are made to the
algorithm.

3.1 Algorithm One
The agorithm is initialised by a population of decision
matrices whose 0,1 elements are randomly generated Three

situations arise from this formulaion.

1. It will be likely that there will be possible crashes in the
resuitant randomly determined schedules.

2. The decision matrix may direct a train to stop when it is
not necessary (that is, when there is no impending contlict
witl another train}.

3. The binary elements in the matrix contains no information

about how long a train is required to stop and wait at a
passing loop if the decision is 0.

In order to “educate” the GA about point }, a penalty function
is added to the cost function {equation {1}) which penalises the
number of infeasibilities in a decision matrix, m. A combined
obiective function is defined as

C(m) = Z[: i (3 + goem ) + A{x) (2}

] ke

where A(x) 1s the penalty function with x being the number of
infeasibilities in the schedule m. A method is reguired to
detect crashes and o count them. The possible combinations
of infeasibilities are now considered between passing loops /
and i+1.

3.1.1 Counting Infeasibilities

Let a northbound train & depart from passing loop [ at time
e Let a southbound train # depart from loop /+1 at time
’[dn(;-.;). The time of arrival of the trains at the next passing
loop can be easily calculated given the cruising speeds of the
trains and the distance between the two given passing loops.
Then let .y and T, denote the respective arrival times. I

d 4 d _a
To) € Theny 808 TS Ty
then we have a clear crash. Examples of these conditions are

given m figures land 2, where it should be noted that
td{n}(])z:Tdiii and t&(ﬂ]{i)“‘f“m‘

tajkfi+1)
" tagp 141

fnop |

Figure 1. A clear crash between loops /and 1.

tdpji+1] /t\a\ik}[m 5 o

- - ioop §
ki) talnfl)

Figare 2. A clear crash at loop /1

Trains occupying the same loop

Two {rains are not permitted to be waiting in the same passing
loop at the same lime. Detection of this is in the same way as
above.  Assuming that trains k and n both have positive
wailting times, i any of the following inequalities holds, then
we have an infeasibifity.

o E: d . .
1. 7% = 7' and %y = % where k and n are heading in
opposite directions,;

jo]

b i 1 4
% < Ty < T and T < %, where k and n are bath
heading in the same direction;

3y < T < 1y and 1% > % where k and n are both
heading in the same direction.

An example of trains occupying the same loop s given in the

figure below:

logp 1+]

lpop i

Figure 3. The two trains are occupying the loop / at the same
time.



Coglescing irains

This last infeasibily occurs only with traing heading in the same
direction, This case is detected if the arrival and departure
times are sufficiently close for two trains heading in the same
direction,

3.1.2 Fitpess function

The fitness function of each individual w1 is calculated as

F ) = C e Oy {3}

where (pumax;{ (7] is the highest cost in the population,

Points 2 and 3 are closely related as a train needs to stop and
wait for some period of time in locp & only when there will be
a clear crash with another train between loops & and k+1, or
between loops & and A&} When an element in the decision
matrix is 0 and there is no impending conflict, then the
algorithm changes the decision 1o 1 so that the train does not
stop. Clearly, if the train does not stop, then waiting time
need not be calculated. In the reverse case where the decision
is 1 in the face of a collision between two trains, two factors
must be determined: which train stops, and for how long?

Consider a northbound traim / that arrives at loop £ at time 7
and a southbound train / that arrives at loop A+1 at time Ty,
Let the time taken to travel the track section between loop &
angd &+1 be Ty, If both trains continue without stopping, then
the result will be an infeasible intersection. Suppose train /
stops while train j passes, then clearly the minimum waiting
time is given by equation (4} below:

\

W= + ('E‘é - r'_k} + &0, ) {43

Similarly, if train / stops while train i continues, then the delay
is given by equation {5):

w = LT/( -T l} + & (5}

B(1}) is a safety tolerance for small factors which may not have
been accounted for. A train is stopped according to the
criterion in the following section.

3.1.3 Conflict Resolving Criterion

I Yoo nyTi®pn € Yac oy, then let train / pass and train f
stop and wait at loop #+1. Otherwise, let train / pass and train
i stop and wait at loop &.

After the fitness values for every matrix in the random
population has been determined, in order to obtain another
generation of improved solutions, the genetic operators

reproduction, crossover and mutation are used.

3.1.4 Reproduction

The process used here is generational reproduction, with the
probability that an individual is chosen given by

C ewe— CUF)
P, = T ®)
3 (C o CUY)

Note that the individuals with fitnesses equal to (g are
deleted from the new population with probability 1. This
results in a gradual shrinking of the gap between the fittest and
least fit in the population.

3.1.5 Crossgver

During this recombination step, two point crossover is used.
The properties of two point crossover, when performed on
matrices, is different from when it is used on strings. Two
point crossover on matrices would be a natural extension to
one peint crossover on strings.  Say cutpoints (x;, y) are
chosen. Then {x1,y,) i the lower right hand corner clement of
the submatrix in a matrix m,; that is to be interchanged with a
different matrix m, to produce two new matrices.

346 Mautation

We carry out mutation as the random alteration of an element
in the decision matrix from 0 to 1, or vice versa. The elements
corresponding 1o starting and  destination loops are not
mutated.

Algorithm One can now be stated as follows,
Algorithm One

Step Zero - Initialization

(enerate #-popsize binary matrix solutions randomly. Thess
solutions form the imtial population POP{0]. Let &0,

Step One — Delermine waiting thme

Find the arrival and departure times of each train at every loop
by using stopping and starting matrix schedules, brough
calculating the required waiting times as specified in equations
(4) and (5) of Section 3.1.2, and using the Conflict Resolving
Criterion. Update POPA].

Step Two - Determine costs

For every solution /=1,.n, evaluate the cost C{f) of POP[£].

Step Three - Reproduction
Select # individuals from POPA] according to probability ;.
This forms the population POP[4+1].

Step Four - Crossover and Mutation

Choose p parenis, where p is the nearest integer value to #/2,
from POP{L+1]. For each pa rent perform crossover with
probability 7. Update POP[4+1] by replacing the parent
chromosomes by their offspring. Then mutate.

Step Five - Convergence Check
Terminate if the var{ POP[£+1]}<g, where € is some small

— 286 —



number.

Otherwise, set &=f+1 and return to Step One.

The effectiveness of Algorithm One above was tested and,
using an example with 12 passing loops, 4 northbound trains
and 5 southbound trains, a good feasible result for the
minimum  cost was (m*)=1084  This is a dramatic
improvement to the minimum of Cn*) =662 5 obtained by
just runming the local optimality criterion without the genetic
operators. The same control problem was also solved by Ca
and Goh {1994), and the sclution obtained therein was 142,
Further improvements made on the performance of the
algorithm through modifications are discussed below,

3.2 Improving Algorithm One
3.2.1 Algorithm Twe

Improvements in the sonvergence rate of the algorithm were
achieved by using an elitistn selection scheme. Furthermore,
instead of using the Conflict Resolving Criterion, the algorithm
was aitered so that either train may stop and enter a passing
loop to avoid a conflict with equal probability.
Experimentation showed that a guadratic, moderate penalty
function, A{x) = ?.Oxz, where x i3 the number of crashes,
vields the lowest minima This moderate pepalty function
works well since the more severe the penalty, the lower the
resulting s in the population and the higher the number of
iterations  required for the reproduction step.  The
abovementioned modifications resulted in the algorithm
finding better solutions due to &n increased diversity in the
population at each iteration. However, the moderate penalty
function could give rise to solutions which are low in cost but
infeasible. Therefore, two simple restrictions were imposed:

t. If the variance of the population was small and the
minimiwm is infeasibie, then increase mutation rates;

2. Modify the convergence check step in the following way:
Terminate the aigorithm if var{POP[A+1]1<e and if
the minimum in the population is feasible.

The algorithm was run 20 times. The best solution obtained
on a particular run was (e*=86.3 (see figure 4), which is
presumed to be the global minimum.

However, there is a problem with replicability in this
algorithm. Repetitions of the same algorithm seldom converge
to the presumed global minimum.  In addition, the algorithm
often prematurely converges to the local feasible minimum,
Cmr}=122.4 {see figure 5).

The train graph for this minimum has a smali number of stops
but long waiting times, snd this feature seems to propagate
well through the population The restrictions placed on the
algorithm  also implies that the GA has very limited
information to exploit if the variance is smaall but the minimum
is still infeasible. Algorithm Three is devised to overcome the
probleis in Algorithm Twao,

3.2.2 Algorithm Three

Step Zero - Step Two -

Perform these steps as in Algorithm One.

Step Three -- Select and Cross.

Find ail the duplicate strings in POP[k).

For every string with a duplicaie in the population, choose
parerts with probability 7, given in equation {7).

Perform crossover with probability £ If crossover is
performed, replace the duplicate string(s) with the newly
formed chromosomes.

Hno duplicate strings exist in the population, then select two
strings  with probabitity P, and perform crossover with
probability £, Start replacement from the least fit strings in
the population with the newly formed pair of chromosomes,

Lpdate POPLAL

Step Four - Maustation

Perform mutation as in Algorithm One,

Btep Five - Convergence Check

Rank the individuals in ascending order of cost. ¥4 =0, then
set mn=C(1). 1F & > 0, then if Cf1} < min, set £=0 and
min=C{1), (1) = min, then set k=4+1. Terminate when £
= N, where M is the upper bound on the number of fterations
for which the best string of the population has not changed.

The only differences between Algorithms Two and Three are
that the above algorithm imposes the condition that every
string in the population is unique al any one step, and the
entire population is not replaced at every iteration. Table 1
shows that this method has countered the problem of
premature convergence. Of 10 runs, the algorithm did not
converge to the presumed global minimum onlv once. A
higher number of ierations is required as a criterion for
convergence as fewer recombingtion processes oocur at each
iteration,

4. CONCLUSION

The specification of a GA is found to affect the performance
of a GA to & great extent, although the underlying coding of
the problem into a form solvabie by GA remains identical.
Based on the nuemerical comparison of 3 algorithms, a GA
which performs very well has been formufated, which arrives
consistently at {or close to) the global minimum  Algorithm
Three does not compromise computing time. For the test
problem, with 12 passing loops, 9 trains and z population size
of 100, 10,000 iterations can be achieved on modest
computing resources’ in approximately one and a half hours,
Further research will focus on applying the GA to the case of a
more general network,

2 al - . [ ~ -
© The programs were wotten in Turbo Paseal for Windows on
a 486 computer,

— 287 —



Hepeat i: Miﬁiihdm ‘at lteraﬁeﬁ_:s_ at
pumber . | i ¢oNVErgence convergence
1 86.3 12396
2 G953 10270
3 86.3 15092
4 86.3 13459
5 863 165199
& 86.3 11475
7 86.3 18269
2 86.3 10129
9 863 100603
10 86.3 11989

Table 1. Results from Algorithm Three. Population size=100,
I=10 000, P,=0.7, P,,;=0.05.

Acknowledgements

The authors would like to thank Michael McAleer and John
Taplin for helpful comments and suggestions.

References

Cai, X. and Goh, C.I (1994), A Fast Heuristic for the Train
Scheduling Problem, Compulers and Operations Research:
An International Journal, 21, pp. 499-310.

Goldberg, DE. (1989), Genetic Algorithms in Search,
Optimizarion and  Machine Learning, Addison ‘Wesley,
Reading.

Michalewicz, Z. (1992}, Generic Algorithms -+ Data
Strucinres = Evolution Programs, Springer-Verlag, New
York.

Salim, V. and Cai, X. (1995), A Genetic Algorithm for
Railway Scheduling with Environmental Considerations,
forthcoming in Apvironmelrics.

Sysweda G. (19913, A Study of Generational and Steady State
Genetic Algerithms, in G.JLE. Rawiins (ed ), Foundations of
Genetic  Algorithms, Morgen Kaufmann Publishers, San
Mateo, California.

Figure 4. Distance (vertical axis) and time (horizontal axis) graph for the generated schedule with cost 86.3.

— 288 —



[
=}

na

S
w

w

289 —

Figure 5. Distance {vertical axis} and tine {honzontal axis} graph for the generated schedule with cost 122.4




